COVID-19 – Spatial and Temporal Epidemiology


Geo-social Media Analytics for Monitoring the Spatio-temporal Spread of COVID-19




The epidemiology of airborne infectious diseases such as the coronavirus SARS-CoV-2 is an inherently spatiotemporal phenomenon. Moving through time and space, a disease can be tracked by interpreting geographical data such as medical incidence and news reports, but also from informal accounts such as geolocated social media posts. Statistical models for disease outbreak monitoring and prediction can make use of this fact by incorporating the data from a region of interest, as well as their respective neighbourhood.


Aiming at the prediction of disease patterns, we employ and extend a wide range of from the fields of geostatistics, geo-machine learning and natural language processing. Further, we develop our methods with the aspects of data privacy and handling personalised data in mind, resulting in a strong privacy-by-design aspect of our work.


Exemplary results include the time-series of COVID-related tweets, the latest COVID-related tweets clustered on a map and the latest COVID-related tweets that are geospatially related to the target area in the form of a list. These results are regularly sent to relief organisations to help them to get a quick overview of the Twitter stream with the possibility to focus on particularly interesting tweets. Meanwhile, the results contribute to the work of several crisis teams. Results are listed in HTML-files that can be easily explored by experts and an example can be seen in an example page (13th April).

We are also continuously producing new results for different study regions, for example in central Europe and mainland USA.



Key Publications
Kogan, N., Clemente, L., Liautaud, P., Kaashoek, J., Link, N., Nguyen, A., Lu, F., Huybers, P., Resch, B., Havas, C., Petutschnig, A., Davis, J., Chinazzi, M., Mustafa, B., Hanage, W., Vespignani, A., Santillana, M. (2020) An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time Preprint, arXiv:
Kounadi, O., Resch, B., Petutschnig, A. (2018) Privacy Threats and Protection Recommendations for the Use of Geosocial Network Data in Research Social Sciences 7(10), 191, DOI:
Bernd Resch (project lead)
Andreas Petutschnig, Clemens Havas

Project Partners